Search icone
Search and publish your papers

Principles of Cellular Electrophysiology

Or download with : a doc exchange

About the author


About the document

Published date
documents in English
research papers
3 pages
0 times
Validated by
0 Comment
Rate this document
  1. Introduction
  2. The neuronal membranes
  3. Passive membrane properties
    1. Conductance
    2. Capacitance
  4. Active membrane properties
    1. Action potentials
    2. The K+ equilibrium potential
  5. Conclusion
  6. References

Resting Membrane Potential In nerve cells, potassium ions (K+) are at higher concentration inside the membrane than outside whereas the opposite is true for sodium (Na+), calcium (Ca2+), and chloride (Cl?) ions (Fig. 1.9-1). The bulk solutions on either side of the membrane are electrically neutral, with most of the intracellular negative charge being contributed by large organic anions (acids and proteins). The differential distribution of ions across neuronal membranes results in part from the action of membrane pumps that use energy from adenosine triphosphate (ATP) to drive ions against a concentration gradient into or out of the cell. The best characterized pump is the Na+-K+ adenosine triphosphatase (ATPase) that transports 3 Na+ out of and 2 K+ into the cell during each cycle. Because an unequal amount of charge is moved during each cycle, the pump is electrogenic and produces an electrochemical potential across the membrane that makes the inside of the membrane negative with respect to the outside. Na+-K+ ATPase activity is a major contributor to brain energy utilization, with as much as 40 percent of brain oxygen consumption resulting from pump activity required to reestablish ionic homeostasis following action potential firing and synaptic transmission. The cardiac glycosides digoxin (Lanoxin) and ouabain are effective inhibitors of Na+-K+ ATPase in the heart and improve myocardial contractility by depolarizing cardiac myocytes and increasing intracellular Ca2+.

[...] Na+ and Ca2+ channel opening has the opposite effect, making the inside of the cell less negative (depolarization). At any time, the membrane potential is a weighted average of the equilibrium potentials of the ions to which the membrane is permeable. Passive Membrane Properties To understand how ion concentration gradients, electrical gradients, ion channels, and the distribution of charges across the membrane are related, it is helpful to describe the cell membrane as an electrical circuit consisting of resistors (conductors), batteries, and capacitors. [...]

[...] The bulk extracellular and intracellular solutions are electrically neutral and the charge separation that produces the membrane potential occurs in the immediate vicinity of the membrane. The number of ions needed to change the membrane potential is very small relative to concentrations in the bulk solutions. For example, a potential change of 100 mV across a 1 cm2 area of membrane requires the movement of only about 10?12 moles of a monovalent ion. By comparison, Na+ and are present at about M in the extracellular and intracellular fluids, respectively. [...]

Recent documents in biology category

Neurodegenerative disease - Compare Parkinson's and Alzheimer's disease

 Science & technology   |  Biology   |  Presentation   |  06/29/2017   |   .doc   |   3 pages

Risk factors, etiological factors, clinical manifestations and specific implications of...

 Science & technology   |  Biology   |  Presentation   |  06/29/2017   |   .doc   |   4 pages